鋳物・ダイカスト用アルミ合金中添加物各成分の影響

D / 407		
影響元素	効果	弊害
Cu	・時効硬化性付与(硬さ増加)・マトリックス強化・切削性向上・高温強度付与	·耐食性阻害
Si	·流動性付与 ·押湯性増 ·熱膨張低下 ·耐摩耗性向上	・AI-Mg系合金で伸び、耐衝撃性低下
Mg	・AI-Mg合金で耐食性、機械的強度、切削性 向上 ・AI-Si系合金で時効硬化性付与	・溶湯粘性増加 ・流動性阻害 ・Al-Si、Al-Si-Cu系合金で伸び、耐衝撃性 阻害
Zn	・流動性向上 ・(AI-Zn-Mg系合金でMgと共存して機械的 強度付与)	•耐食性低下
Fe	・ダイカスト用合金で、ダイカストへの焼付き 防止	 ・FeAl3、Al-Fe-Si系金属間化合物を形成靭性低下 ・スラッジ生成→金属製ハードスポット ・Al-Mg系合金で耐食性低下
Mn	・Fe系針状化合物の塊状または支那文字 状化(靭性、耐食性の劣化抑制)	・スラッジ生成→金属製ハードスポット
Ni	·高温強度付与 ·耐熱性付与	•耐食性阻害
Ti	・結晶粒微細化 ・機械的性質向上 ・(AI-Cu系合金などで引け割れ防止)	・過剰になると溶湯粘性増加

影響		弊害
元素 Cr		・特にAl-Si、Al-Si-Cu系合金で著しいスラッジ生成助長作用
Sn, Pb		・耐食性劣化 ・ダイカストでは粒界凝固遅れによる割れ 発生
Bi, Sb	・AI-Mg合金でNaによる脆化を改善	・Na、Srなどの組織改良効果阻害
Ca, Na Sr	・Al-Si、Al-Si-Cu系合金で組織改良効果	・ガス呼吸傾向増大 ・Caは異常肌(ガマ肌)を呈する ・Pによる初晶Siの微細化効果阻害 ・Al-Mg合金で高温脆化
Р	・高Si合金で初晶Siの微細化効果	・Ca、Na、Srなどの組織改良効果阻害
Be	・AI-Mg合金のMgの酸化消耗抑制	
В	•Tiと共存して結晶粒微細化効果	・Tiと共存すると沈降堆積しやすい
ガス	・ザク巣分散微細化	・ポロシティ生成 ・機械的性質低下 ・熱処理時にフクレ発生
介在物		・流動性低下・ガスポロシティ増大・機械的性質低下・非金属製ハードスポット

_______ ※ポロシティー=気孔